YES 1.933 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule List
  ((isSuffixOf :: Eq a => [a ->  [a ->  Bool) :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] _ True
isPrefixOf [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule List
  ((isSuffixOf :: Eq a => [a ->  [a ->  Bool) :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule List
  (isSuffixOf :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(xy7800), Succ(xy5700000)) → new_primPlusNat(xy7800, xy5700000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(xy54000), Succ(xy570000)) → new_primMulNat(xy54000, Succ(xy570000))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(xy5400), Succ(xy57000)) → new_primEqNat(xy5400, xy57000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), app(app(ty_@2, cc), cd), ce) → new_esEs(xy540, xy5700, cc, cd)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), app(ty_[], cf), ce) → new_esEs0(xy540, xy5700, cf)
new_esEs2(Just(xy540), Just(xy5700), app(app(app(ty_@3, bbb), bbc), bbd)) → new_esEs1(xy540, xy5700, bbb, bbc, bbd)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, app(app(app(ty_@3, gh), ha), hb), gf) → new_esEs1(xy541, xy5701, gh, ha, hb)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), ba, app(ty_Maybe, bh)) → new_esEs2(xy541, xy5701, bh)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, app(app(ty_Either, hd), he), gf) → new_esEs3(xy541, xy5701, hd, he)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, app(app(ty_@2, gd), ge), gf) → new_esEs(xy541, xy5701, gd, ge)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, fa, app(app(ty_Either, gb), gc)) → new_esEs3(xy542, xy5702, gb, gc)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), app(ty_[], hh), fa, gf) → new_esEs0(xy540, xy5700, hh)
new_esEs3(Right(xy540), Right(xy5700), bdb, app(app(ty_Either, beb), bec)) → new_esEs3(xy540, xy5700, beb, bec)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, fa, app(app(app(ty_@3, ff), fg), fh)) → new_esEs1(xy542, xy5702, ff, fg, fh)
new_esEs3(Right(xy540), Right(xy5700), bdb, app(app(app(ty_@3, bdf), bdg), bdh)) → new_esEs1(xy540, xy5700, bdf, bdg, bdh)
new_esEs3(Left(xy540), Left(xy5700), app(app(app(ty_@3, bcd), bce), bcf), bcb) → new_esEs1(xy540, xy5700, bcd, bce, bcf)
new_esEs2(Just(xy540), Just(xy5700), app(ty_Maybe, bbe)) → new_esEs2(xy540, xy5700, bbe)
new_esEs3(Left(xy540), Left(xy5700), app(app(ty_Either, bch), bda), bcb) → new_esEs3(xy540, xy5700, bch, bda)
new_esEs3(Left(xy540), Left(xy5700), app(app(ty_@2, bbh), bca), bcb) → new_esEs(xy540, xy5700, bbh, bca)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), app(app(ty_Either, ef), eg)) → new_esEs3(xy540, xy5700, ef, eg)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, fa, app(app(ty_@2, fb), fc)) → new_esEs(xy542, xy5702, fb, fc)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), ba, app(app(app(ty_@3, be), bf), bg)) → new_esEs1(xy541, xy5701, be, bf, bg)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, fa, app(ty_[], fd)) → new_esEs0(xy542, xy5702, fd)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), app(app(app(ty_@3, baa), bab), bac), fa, gf) → new_esEs1(xy540, xy5700, baa, bab, bac)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), app(app(ty_Either, dd), de), ce) → new_esEs3(xy540, xy5700, dd, de)
new_esEs3(Left(xy540), Left(xy5700), app(ty_Maybe, bcg), bcb) → new_esEs2(xy540, xy5700, bcg)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, app(ty_Maybe, hc), gf) → new_esEs2(xy541, xy5701, hc)
new_esEs3(Left(xy540), Left(xy5700), app(ty_[], bcc), bcb) → new_esEs0(xy540, xy5700, bcc)
new_esEs2(Just(xy540), Just(xy5700), app(app(ty_@2, bag), bah)) → new_esEs(xy540, xy5700, bag, bah)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), ba, app(app(ty_Either, ca), cb)) → new_esEs3(xy541, xy5701, ca, cb)
new_esEs3(Right(xy540), Right(xy5700), bdb, app(ty_[], bde)) → new_esEs0(xy540, xy5700, bde)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), app(app(app(ty_@3, eb), ec), ed)) → new_esEs1(xy540, xy5700, eb, ec, ed)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, app(ty_[], gg), gf) → new_esEs0(xy541, xy5701, gg)
new_esEs2(Just(xy540), Just(xy5700), app(ty_[], bba)) → new_esEs0(xy540, xy5700, bba)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), eh, fa, app(ty_Maybe, ga)) → new_esEs2(xy542, xy5702, ga)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), ba, app(ty_[], bd)) → new_esEs0(xy541, xy5701, bd)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), app(ty_Maybe, dc), ce) → new_esEs2(xy540, xy5700, dc)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), ba, app(app(ty_@2, bb), bc)) → new_esEs(xy541, xy5701, bb, bc)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), app(ty_Maybe, ee)) → new_esEs2(xy540, xy5700, ee)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), app(ty_Maybe, bad), fa, gf) → new_esEs2(xy540, xy5700, bad)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), app(app(ty_Either, bae), baf), fa, gf) → new_esEs3(xy540, xy5700, bae, baf)
new_esEs3(Right(xy540), Right(xy5700), bdb, app(ty_Maybe, bea)) → new_esEs2(xy540, xy5700, bea)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), app(app(ty_@2, dg), dh)) → new_esEs(xy540, xy5700, dg, dh)
new_esEs(@2(xy540, xy541), @2(xy5700, xy5701), app(app(app(ty_@3, cg), da), db), ce) → new_esEs1(xy540, xy5700, cg, da, db)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), app(ty_[], ea)) → new_esEs0(xy540, xy5700, ea)
new_esEs1(@3(xy540, xy541, xy542), @3(xy5700, xy5701, xy5702), app(app(ty_@2, hf), hg), fa, gf) → new_esEs(xy540, xy5700, hf, hg)
new_esEs2(Just(xy540), Just(xy5700), app(app(ty_Either, bbf), bbg)) → new_esEs3(xy540, xy5700, bbf, bbg)
new_esEs0(:(xy540, xy541), :(xy5700, xy5701), df) → new_esEs0(xy541, xy5701, df)
new_esEs3(Right(xy540), Right(xy5700), bdb, app(app(ty_@2, bdc), bdd)) → new_esEs(xy540, xy5700, bdc, bdd)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf(:(xy530, xy531), :(xy5710, xy5711), ba) → new_isPrefixOf(xy531, xy5711, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf0(xy54, xy53, xy57, :(xy5610, xy5611), ba) → new_isPrefixOf0(xy54, xy53, new_flip(xy57, xy5610, ba), xy5611, ba)

The TRS R consists of the following rules:

new_flip(xy53, xy54, ba) → :(xy54, xy53)

The set Q consists of the following terms:

new_flip(x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf1(xy53, xy54, :(xy550, xy551), xy56, ba) → new_isPrefixOf1(new_flip(xy53, xy54, ba), xy550, xy551, xy56, ba)

The TRS R consists of the following rules:

new_flip(xy53, xy54, ba) → :(xy54, xy53)

The set Q consists of the following terms:

new_flip(x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: